• 10 Posts
  • 286 Comments
Joined 1 year ago
cake
Cake day: June 10th, 2023

help-circle

  • The problem is that games don’t run at all or require major effort to run without issues.

    A major cause for that is the distro - when it comes to gaming, the distro makes a huge difference as I outlined previously. The second major cause is the flavor of Wine you chose (Proton-GE is the best, not sure what you used). The third major cause is checking whether or not the games are even compatible in the first place (via ProtonDB, Reddit etc) - you should do this BEFORE you recommend Linux to a gamer.

    In saying all that, I’ve no idea about pirated stuff though, you’re on your own on that one - Valve and the Wine developers obviously don’t test against pirated copies, and you won’t get much support from the community either.


  • Unfortunately you chose the wrong distro for your friend - Linux Mint isn’t good for gaming - it uses an outdated kernel/drivers/other packages, which means you’ll be missing out on all the performance improvements (and fixes) found in more up-to-date distros. Gaming on Linux is a very fast moving target, the landscape is changing at a rapid pace thanks to the development efforts of Valve and the community. So for gaming, you’d generally want to be on the latest kernel+mesa+wine stack.

    Also, as you’ve experienced, on Mint you’d have to manually install things like Waydroid and other gaming software, which can be a PITA for newbies.

    So instead, I’d highly recommend a gaming-oriented distro such as Nobara or Bazzite. Personally, I’m a big fan of Bazzite - it has everything you’d need for gaming out-of-the-box, and you can even get a console/Steam Deck-like experience, if you install the -deck variant. Also, because it’s an immutable distro with atomic updates, it has a very low chance of breaking, and in the rare ocassion that an update has some issues - you can just select the previous image from the boot menu. So this would be pretty ideal for someone who’s new to Linux, likes to game, and just wants stuff to work.

    In saying that, getting games to run in Linux can be tricky sometimes, depending on the game. The general rule of thumb is: try running the game using Proton-GE, and if that fails, check Proton DB for any fixes/tweaks needed for that game - with this, you would never again have to spend hours on troubleshooting, unless you’re playing some niche game that no one has tested before.









  • d3Xt3r@lemmy.nztoAsklemmy@lemmy.mlDo you practice self care?
    link
    fedilink
    arrow-up
    11
    ·
    edit-2
    7 months ago

    Pretty much the same as you, but I do yoga instead of qigong. Plus I focus a lot on diet and nutrition and try to make sure I’m getting everything I need, whilst trying to minimise or avoid things that are bad for you, like processed foods, sugary stuff etc. Bought a Garmin smartwatch and smart scales last year to keep a track of my exercise goals, hydration, HRV, and sleep quality, and that’s been real helpful in keeping track of my health.

    Also planning to take up some basic martial arts as well; I was looking at kyokushin, but might pick wing chun due to it’s practicality / self-defence aspects.

    Bonus question: Where else can I post questions besides Ask Lemmy?

    You can also post questions on Ask Lemmy’s evil twin - !asklemmy@lemmy.world




  • Paper boxes may be equally bad or even worse, since many of them are coated with PFAS (aka “forever chemicals”) - which can leach into your food and the environment.

    Now whilst the FDA has banned sale of PFAS-coated containers earlier this year, it is expected that such products may remain on the market till sometime next year. Of course, it also doesn’t stop someone from ordering cheap PFAS-loaded boxes from AliExpress or elsewhere. And if you’re not in the US, you’d have to find out if there’s a similar ban in your country, and/or verify whether the manufacturer of whatever container/utensil you’re using is PFAS-free.

    It would also be prudent to check even non-paper food-related products (spoons, spatulas, chopping boards etc). Even so called 100% recyclable “food safe” plastic, bio-plastics made from plant pulp, and traditionally eco-friendly wooden containers and utensils may be coated with PFAS.


  • d3Xt3r@lemmy.nztoAndroid@lemmy.worldDoes Samsung have region locking?
    link
    fedilink
    English
    arrow-up
    4
    ·
    edit-2
    8 months ago

    The answers here are only partially correct. If you want to use your device internationally, there are four things or categories you need to consider:

    1. Carrier locked devices
    2. Region-specific devices
    3. Carrier whitelisting
    4. Regulatory requirements

    Carrier locked devices are exactly that, these are the ones sold by your carrier and subsidised, they usually mention that you can’t use them with other carriers. Eg the SM-S928U of the S24 works only on AT&T. If you have one of these, you may be able to buy an unlock code online to unlock your phone. Depending on your model, you might also need to flash compatible firmware or unlock additional bands from the service menu, if you want to be able to actually use it with your destination carrier.

    Region-specific devices generally have limited cellular bands, meant for usage in that country. Eg although the SM-S928U1 variant of the S24 is factory unlocked (unlike the SM-S928U), it may not carry all the bands required for operation outside the US. If you’re unsure about compatibility, use this website to check the bands for your target country/carrier. Generally though, if you travel a lot, it’s recommend to buy the international / global variant of a phone. As an alternative, if you have a US variant Samsung, you could use the service menu to enable all bands. Though regardless of the variant, it’s always a good idea to check the band compatibility before you purchase the device/travel.

    Carrier whitelisting is a recent annoying thing which carriers have started doing for some technologies such as 5G, VoLTE, VoWiFi etc. Some of these features may or may not be critical for you, for eg, if the destination carrier no longer offer 2G/3G services, that means you must be able to get VoLTE in order to make calls. And VoWiFi is needed if you’re in an area with poor reception, but have WiFi access. Finally, 5G would be a bonus thing but most carriers allow only whitelisted models to connect to their 5G services. Samsung normally should work in general, but given how many variants Samsung makes, there’s no guarantee that your specific variant would be able to use some/all of these services. So you’ll need to check with your target carrier in advance to see which of their services your phone would be able to support.

    Finally, some countries may have regulatory requirements which may legally prevent shops/carriers from selling you a SIM card, if your phone isn’t in their database. For instance, in Japan, it’s technically illegal to operate a device without a “giteki” mark - and if your phone doesn’t have this, operators may refuse to sell you a card. In this case however, you should be fine if you order a compatible SIM/eSIM online before arrival (eg from Sakura Mobile).


  • It’s easiest to just register a domain name and use Couldflare Tunnels. No need to worry about dynamic DNS, port forwarding etc. Plus, you have the security advantages of DDoS protection and firewall (WAF). Finally, you get portability - you can change your ISP, router or even move your entire lab into the cloud if you wanted to, and you won’t need to change a single thing.

    I have a lab set up on my mini PC that I often take to work with me, and it works the same regardless of whether it’s going thru my work’s restricted proxy or the NAT at home. Zero config required on the network side.


  • d3Xt3r@lemmy.nzMtoLinux@lemmy.mlThoughts on CachyOS?
    link
    fedilink
    arrow-up
    0
    ·
    edit-2
    8 months ago

    No need to hop around for the same thing.

    It’s not really the same thing. EndeavourOS is basically vanilla Arch + a few branding packages. CachyOS is an opionated Arch with optimised packages.

    You still have the option to select the DE and the packages you want to install - just like EndeavourOS - but what sets Cachy apart is the optimisations. For starters, they have multiple custom kernel options, with the BORE scheduler (and a few others), LTO options etc. Then they also have packages compiled for the x86-64-v3 and v4 architectures for better performance.

    Of course, you could also just use Arch (or EndeavourOS) and install the x86-64-v3/v4 packages yourself from ALHP (or even the Cachy repos), and you can even manually install the Cachy kernel or a similar optimised one like Xanmod. But you don’t get the custom configs / opinionated stuff. Which you many actually not want as a veteran user. But if you’re a newbie, then having those opinionated configs isn’t such a bad idea, especially if you decide to just get a WM instead of a DE.

    I’ve been thru all of the above scenarios, depending on the situation. My homelab is vanilla Arch but with packages from the Cachy repo. I’ve also got a pure Cachy install on my gaming desktop just because I was feeling lazy and just wanted an optimised install quickly. They also have a gaming meta package that installs Steam and all the necessary 32-bit libs and stuff, which is nice.

    Then there’s Cachy Browser, which is a fork of LibreWolf with performance optimisations (kinda similar to Mercury browser, except Mercury isn’t MARCH optimised).

    As for support, their Discord is pretty active, you can actually chat with the developers directly, and they’re pretty friendly (and this includes Piotr Gorski, the main dev, and firelzrd - the person behind the BORE scheduler). Chatting with them, I find the quality of technical discussions a LOT higher than the Arch Discord, which is very off-topic and spammy most of the time.

    Also, I liked their response to Arch changes and incidents. When Arch made the recent mkinitcpio changes, their made a very thorough announcement with the exact steps you needed to take (which was far more detailed than the official Arch announcement). Also, when the xz backdoor happened, they updated their repos to fix it even before Arch did.

    I’ve also interacted with the devs pesonally with various technical topics - such as CFLAG and MARCH optimisations, performance benchmarking etc, and it seems like they definitely know their stuff.

    So I’ve full confidence in their technical ability, and I’m happy to recommend the distro for folks interested in performance tuning.

    cc: @governorkeagan@lemdro.id


  • Others here have already given you some good overviews, so instead I’ll expand a bit more on the compilation part of your question.

    As you know, computers are digital devices - that means they work on a binary system, using 1s and 0s. But what does this actually mean?

    Logically, a 0 represents “off” and 1 means “on”. At the electronics level, 0s may be represented by a low voltage signal (typically between 0-0.5V) and 1s are represented by a high voltage signal (typically between 2.7-5V). Note that the actual voltage levels, or what is used to representation a bit, may vary depending on the system. For instance, traditional hard drives use magnetic regions on the surface of a platter to represent these 1s and 0s - if the region is magnetized with the north pole facing up, it represents a 1. If the south pole is facing up, it represents a 0. SSDs, which employ flash memory, uses cells which can trap electrons, where a charged state represents a 0 and discharged state represents a 1.

    Why is all this relevant you ask?

    Because at the heart of a computer, or any “digital” device - and what sets apart a digital device from any random electrical equipment - is transistors. They are tiny semiconductor components, that can amplify a signal, or act as a switch.

    A voltage or current applied to one pair of the transistor’s terminals controls the current through another pair of terminals. This resultant output represents a binary bit: it’s a “1” if current passes through, or a “0” if current doesn’t pass through. By connecting a few transistors together, you can form logic gates that can perform simple math like addition and multiplication. Connect a bunch of those and you can perform more/complex math. Connect thousands or more of those and you get a CPU. The first Intel CPU, the Intel 4004, consisted of 2,300 transistors. A modern CPU that you may find in your PC consists of hundreds of billions of transistors. Special CPUs used for machine learning etc may even contain trillions of transistors!

    Now to pass on information and commands to these digital systems, we need to convert our human numbers and language to binary (1s and 0s), because deep down that’s the language they understand. For instance, in the word “Hi”, “H”, in binary, using the ASCII system, is converted to 01001000 and the letter “i” would be 01101001. For programmers, working on binary would be quite tedious to work with, so we came up with a shortform - the hexadecimal system - to represent these binary bytes. So in hex, “Hi” would be represented as 48 69, and “Hi World” would be 48 69 20 57 6F 72 6C 64. This makes it a lot easier to work with, when we are debugging programs using a hex editor.

    Now suppose we have a program that prints “Hi World” to the screen, in the compiled machine language format, it may look like this (in a hex editor):

    As you can see, the middle column contains a bunch of hex numbers, which is basically a mix of instructions (“hey CPU, print this message”) and data (“Hi World”).

    Now although the hex code is easier for us humans to work with compared to binary, it’s still quite tedious - which is why we have programming languages, which allows us to write programs which we humans can easily understand.

    If we were to use Assembly language as an example - a language which is close to machine language - it would look like this:

         SECTION .data
    msg: db "Hi World",10
    len: equ $-msg
    
         SECTION .text
         
         global main   
    main:
         mov  edx,len
         mov  ecx,msg
         mov  ebx,1
         mov  eax,4
    
         int  0x80
         mov  ebx,0
         mov  eax,1
         int  0x80
    

    As you can see, the above code is still pretty hard to understand and tedious to work with. Which is why we’ve invented high-level programming languages, such as C, C++ etc.

    So if we rewrite this code in the C language, it would look like this:

    #include <stdio.h>
    int main() {
      printf ("Hi World\n");
      return 0;
    } 
    

    As you can see, that’s much more easier to understand than assembly, and takes less work to type! But now we have a problem - that is, our CPU cannot understand this code. So we’ll need to convert it into machine language - and this is what we call compiling.

    Using the previous assembly language example, we can compile our assembly code (in the file hello.asm), using the following (simplified) commands:

    $ nasm -f elf hello.asm
    $ gcc -o hello hello.o
    

    Compilation is actually is a multi-step process, and may involve multiple tools, depending on the language/compilers we use. In our example, we’re using the nasm assembler, which first parses and converts assembly instructions (in hello.asm) into machine code, handling symbolic names and generating an object file (hello.o) with binary code, memory addresses and other instructions. The linker (gcc) then merges the object files (if there are multiple files), resolves symbol references, and arranges the data and instructions, according to the Linux ELF format. This results in a single binary executable (hello) that contains all necessary binary code and metadata for execution on Linux.

    If you understand assembly language, you can see how our instructions get converted, using a hex viewer:

    So when you run this executable using ./hello, the instructions and data, in the form of machine code, will be passed on to the CPU by the operating system, which will then execute it and eventually print Hi World to the screen.

    Now naturally, users don’t want to do this tedious compilation process themselves, also, some programmers/companies may not want to reveal their code - so most users never look at the code, and just use the binary programs directly.

    In the Linux/opensource world, we have the concept of FOSS (free software), which encourages sharing of source code, so that programmers all around the world can benefit from each other, build upon, and improve the code - which is how Linux grew to where it is today, thanks to the sharing and collaboration of code by thousands of developers across the world. Which is why most programs for Linux are available to download in both binary as well as source code formats (with the source code typically available on a git repository like github, or as a single compressed archive (.tar.gz)).

    But when a particular program isn’t available in a binary format, you’ll need to compile it from the source code. Doing this is a pretty common practice for projects that are still in-development - say you want to run the latest Mesa graphics driver, which may contain bug fixes or some performance improvements that you’re interested in - you would then download the source code and compile it yourself.

    Another scenario is maybe you might want a program to be optimised specifically for your CPU for the best performance - in which case, you would compile the code yourself, instead of using a generic binary provided by the programmer. And some Linux distributions, such as CachyOS, provide multiple versions of such pre-optimized binaries, so that you don’t need to compile it yourself. So if you’re interested in performance, look into the topic of CPU microarchitectures and CFLAGS.

    Sources for examples above: http://timelessname.com/elfbin/


  • d3Xt3r@lemmy.nztoSelfhosted@lemmy.worldDo you encrypt your data drives?
    link
    fedilink
    English
    arrow-up
    38
    arrow-down
    2
    ·
    8 months ago

    This shouldn’t even be a question lol. Even if you aren’t worried about theft, encryption has a nice bonus: you don’t have to worry about secure erasing your drives when you want to get rid of them. I mean, sure it’s not that big of a deal to wipe a drive, but sometimes you’re unable to do so - for instance, the drive could fail and you may not be able to do the wipe. So you end up getting rid of the drive as-is, but an opportunist could get a hold of that drive and attempt to repair it and recover your data. Or maybe the drive fails, but it’s still under warranty and you want to RMA it - with encryption on, you don’t have to worry about some random accessing your data.